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This introductory astronomy course could be the only science course a student 
will take in college. As we wrote this book, we considered basic questions such 
as these: What will students remember 5 years from now about astronomy and 
about how science works? How should this course change the students who take 
it? And how can we, as scientists and educators, facilitate those changes within 
our students?

We believe an introductory astronomy course should help students learn to ask 
questions, make observations, identify patterns and relationships that go beyond 
the specifics of a particular object or setting, and apply those patterns and rela-
tionships broadly. We want students to challenge and test what they learn. This is 
what it means to think like a scientist.

We wrote this textbook and built its supporting ancillary package with 
one goal in mind: to help students understand the world through the eyes 
of a scientist.

In order to meet that goal, we have tried to tell a story in each chapter 
and have worked hard to link chapters using a few common threads. The 
process of science is one of those threads. Helping a student understand 
a concept as a scientist means guiding that student through the concept, 
making heavy use of examples and analogies, and tying the concept back 
to everyday phenomena and experiences that the student can relate to.

The process of science is in the fabric of the text and incorporates the 
recurring themes of the physics of matter, energy, radiation, and motion. 
Why did Newton choose the form that he did for his universal law of grav-
itation? What are the fundamental differences between Kepler’s empiri-
cal “laws” and Newton’s theoretical derivation of the same relationships? 
And if Einstein was “right,” why wasn’t Newton “wrong”? In the Fourth 
Edition, we have emphasized the process of science in several additional 
ways: new Process of Science Figures, Unanswered Questions boxes, and 
expanded Origins sections.

representation of the process used to make that discovery in one of the 
new Process of Science figures. Because science is not a tidy process, 
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The question: Why is the Solar System a disk,
with all planets orbiting in the same direction?

Process of
Science

Beginning from the same fundamental observations about the shape of the Solar System,
theorists, planetary scientists, and stellar astronomers converge in the nebular theory
that stars and planets form together from a collapsing cloud of gas and dust.

CONVERGING LINES OF INQUIRY

Mathematicians suggest
the nebular hypothesis:

a collapsing rotating cloud
formed the Solar System.

Stellar astronomers
observe disks of gas and dust

surrounding young stars.

Stellar astronomers test
the nebular hypothesis,

seeking evidence
for or against.

Planetary scientists test
the nebular hypothesis,

seeking evidence
for or against. 

Planetary scientists
study meteorites that

show the Solar System
bodies formed from

many smaller bodies.

Stellar astronomers
find dust and gas

around young stars.



we try to illustrate that discoveries are sometimes made by disparate groups, 
sometimes by accident, but always because people are trying to answer a 
question and show why or how we think something is the way it is. One 
example is Chapter 7, where we show how three groups of scientists were all 
working on the question “Why is the Solar System a disk?” and came to the 
same conclusion independently. 

Unanswered Questions box poses questions 
like “How typical is the Solar System?” and “How common are Earth-like 
planets?” to show that we don’t have all the answers and that science is an 
ongoing process. 

A second major thread, Origins, shows how astronomers relate the topic of 
each chapter to the study of the origin of the universe or the origin of life. Since no 
life outside of Earth has been detected, these sections often illustrate how astrobi-
ologists and other scientists approach the study of a scientific question, using the 
process of science rather than providing actual answers or results.

In addition to helping students think like a scientist, we 
have provided a few opportunities for them to actually do sci-
ence. We have added Using the Web questions at the end of 
each chapter. Some of these send students to websites of space 
missions, observatories, experiments, or archives to access 
recent observations, results, or press releases. Other websites 
are for “citizen science” projects (for example, Zooniverse), 
in which students can contribute to the analysis of new data. 
These web problems can be used for homework, lab exer-
cises, recitations, “news” exercises, or “writing across the 
curriculum” projects. (Updated Web addresses are posted on  
StudySpace as needed). 

Explorations, also new to the Fourth Edition, are either 
pencil-and-paper activities or media-based activities that ask 
students to use Nebraska Simulations or Norton’s AstroTours 
to work through a series of guided questions and apply the 
concepts they learned in the chapter. 

To assess student understanding, versions of the end-of-
chapter Explorations, as well as Process of Science Guided 
Inquiry assignments, based on the Process of Science figures, 
are available in Norton’s online homework and tutorial sys-
tem, SmartWork.

Although mathematics is the language of science, we 
understand that the amount of math used differs from school 
to school and instructor to instructor. In order to make the 
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text more accessible to a wider variety of stu-
dents, the math has been moved out of the main 
text into Math Tools boxes. Each box provides a 
succinct quantitative explanation of the concept 
being discussed and can be skipped without los-
ing any qualitative understanding. 

We have made some organizational changes to 
the Fourth Edition. Discussion of basic physics is 
now contained in Part I to accommodate courses 
that use the Solar System or Stars and Galaxies 
volumes. A “just-in-time” approach to introducing 
the physics is still possible by bringing in mate-
rial from Chapters 2–6 as needed. For example, 
the sections on tidal forces in Chapter 4 can be 
taught along with the moons of the Solar System 
in Part II, or with mass transfer in binary stars 
in Part III, or with galaxy interactions in Part 
IV. Spectral lines in Chapter 5 can be taught with 
planetary atmospheres in Part II or with stellar 
spectral types in Part III, and so on.

We start Parts II, III, and IV with the big picture before div-
ing into the smaller details that make up that picture. We cover the 
development of planetary systems in general before discussing our 
own Solar System , and the basic properties of stars before the Sun. 
Part IV begins with the historical discovery of extragalactic objects 
and Hubble’s law, which led to the Big Bang theory. At this point in 
the school year, we find that student interest is greatly renewed by 
the introduction of Hubble Deep Field images and the concept of the 
expanding universe. The next chapter continues with the basics of 
galaxies, including active galactic nuclei. Then, when the Milky Way 
is discussed in the following chapter, students have the background 
for understanding the exciting observational data about the Milky 
Way’s central black hole.

In this edition we made pedagogical upgrades, as well as numer-
ous updates and revisions throughout the book to reflect contempo-
rary research and scientific thought. Some of those changes include:

with the end-of-chapter Summary, to help students review what 
is most important in each chapter.

in Chapter 3, “Motions of Astronomical Bodies.” The chapter 
now ends with Newton’s laws of motion.

-
ity, including tides.

System. We added material in Chapter 9 to cover climate change on the ter-
restrial planets, and how planetary science aids in the study of global climate 
change on Earth.

separates out this material and expands some examples in Math Tools.
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observations of very high-redshift objects.

cosmology.

each chapter, including new True/False and Multiple Choice questions, Ap-
plying the Concepts problems that use graphs from the chapter, and problems 
associated with the Math Tools boxes.

Learning Resources for Students

SmartWork Online Homework: smartwork.wwnorton.com
Steven Desch, Guilford Technical Community College
Violet Mager, Susquehanna University
David A. Wood, San Antonio College
Todd Young, Wayne State College, Nebraska

Over 1,500 questions support the Fourth Edition of 21st Century Astronomy—all 
with answer-specific feedback, hints, and ebook links. Questions include Sum-
mary Self-Tests, Process of Science Guided Inquiry assignments (based on the 
concept discussed in the Process of Science figure in each chapter), and versions 
of the Explorations (based on AstroTours and the Nebraska Simulations). Inter-
active, image-based questions based on both book art and NASA images help 
instructors to assess students’ conceptual understanding.

StudySpace: wwnorton.com/studyspace
W. W. Norton’s free and open student website has the following features:

-
tions, some of which are interactive, use art from the text to help students 
visualize important physical and astronomical concepts.

Nebraska Astronomy Applet Programs), organized to match the goals of the 
text. Nebraska Simulations enable students to manipulate variables and see 
how physical systems work.

-
back on any incorrect answers, also include links to the ebook, AstroTours, 
and Nebraska Simulations.

SmartWork



Starry Night Planetarium Software 
(College Version) and Workbook
Steven Desch, Guilford Technical Community College
Donald Terndrup, Ohio State University

Starry Night is a realistic, user-friendly planetarium simulation program de-
signed to allow students in urban areas to perform observational activities on a 
computer. Norton’s unique accompanying workbook offers observation assign-
ments that guide students’ virtual explorations and help them apply what they’ve 
learned from the text reading assignments. The workbook is fully integrated with 
21st Century Astronomy, Fourth Edition.

For Instructors

Instructor’s Manual
Ana M. Larson, University of Washington
Gregory D. Mack, Ohio Wesleyan University
Ben Sugerman, Goucher College

Revised and expanded for the Fourth Edition, this is now the most complete 
and innovative Instructor’s Manual available for introductory astronomy. This 
impressive resource contains suggested classroom demonstrations, class-tested 
classroom activities with handouts, and additional Explorations to help facili-
tate collaborative learning and conceptual understanding. It also contains brief 
chapter overviews and discussion points, notes on the AstroTour animations 
contained on the Norton Resource Disc and StudySpace, and worked solutions to 
all end-of-chapter problems.

Interactive Instructor’s Guide
This online, searchable database places all of Norton’s astronomy resources at 
instructors’ fingertips. Included are the contents of the Instructor’s Manual, the 
lecture PowerPoint slides with lecture notes, all art and tables in JPEG and Pow-
erPoint formats, the AstroTour animations, and the Nebraska Simulations. With 
its search tools and export capability, the Interactive Instructor’s Guide will help 
instructors search for exactly the resources they need by topic and resource type, 
and will alert subscribing instructors as new resources are made available.

Test Bank
Carol Hood, California State University–San Bernardino
Michael Hood, Mt. San Antonio College
Michael Lopresto, Henry Ford Community College
Tammy Smecker-Hane, University of California–Irvine
Donald Terndrup, Ohio State University

The Test Bank has been developed using the Norton Assessment Guidelines 
and provides a high-quality bank of over 2,000 items. Each chapter of the Test 
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Bank consists of three question types classified according to Norton’s taxonomy of 
knowledge types:

1. Factual questions test students’ basic understanding of facts and concepts.
2. Applied questions require students to apply knowledge in the solution of a problem.
3. Conceptual questions require students to engage in qualitative reasoning and to 

explain why things are as they are.

Questions are further classified by section and difficulty, making it easy to con-
struct tests and quizzes that are meaningful and diagnostic. Each chapter contains 
short-answer, multiple-choice, and true/false questions.

PowerPoint Lecture Slides
Gregory D. Mack, Ohio Wesleyan University

These ready-made lecture slides integrate selected art from the text, “clicker” 
questions, and links to the AstroTour animations. Designed with accompanying 
lecture outlines, these lecture slides are fully editable and are available in Micro-
soft PowerPoint format.

Norton Instructor’s Resource Site
This Web resource contains the following teaching aids to download:

interactive, use art from the text to help students visualize important physical 
and astronomical concepts.

manipulate variables and see how physical systems work.

formats.

Coursepacks
Norton’s Coursepacks, available for use in various Learning Management Systems 

-
Tours and applets. Coursepacks are available in BlackBoard, Angel, Desire2Learn, 
and Moodle formats.

Instructor’s Resource Folder
This two-disc set contains the Instructor’s Resource DVD—which contains the 
same files as the Instructor’s Resource website—and the Test Bank on CD-ROM 
in ExamView format.
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The Virgo cluster of galaxies at a distance 
of about 50 million light-years.



3

The most beautiful thing we can experience is the mysterious.

It is the source of all true art and all science.

He to whom this emotion is a stranger,

who can no longer pause to wonder and stand rapt in awe,

is as good as dead: his eyes are closed.

Albert Einstein (1879–1955)

LE ARNING GOALS
We’ll begin this chapter by sketching out a rough map of the universe and our place 
within it. Then we’ll present some of the tools that you will need to take along as you look 
at the wonders of the universe through the eyes of a scientist. By the conclusion of this 
chapter, you should be able to:

Identify our planet Earth’s place in the universe.
Explain the process of science.
Describe the scientific approach to understanding our world and the universe.

Why Learn 
Astronomy?01



Why Learn Astronomy?

The Milky Way is a member of a collection of a few 
dozen galaxies called the Local Group. Looking farther 
outward, the Local Group is part of a vastly larger collec-
tion of thousands of galaxies—a supercluster—called the 
Virgo Supercluster.

We can now define our cosmic address—Earth, Solar 
System, Milky Way Galaxy, Local Group, Virgo Superclu-
ster—as illustrated in Figure 1.1. Yet even this address is 
not complete, because the vast structure we just described 
is only the local universe. Astronomers use the term 

light-year to refer to the 
distance that light travels 
within one year, about 9.5 
trillion kilometers (km) 
or 6 trillion miles. The 

part of the universe that we can see extends far beyond 
the local universe—13.7 billion light-years—and within 
this volume we estimate that there are hundreds of billions 
of galaxies, roughly as many galaxies as there are stars in 
the Milky Way. In addition, scientists have concluded that 
our universe contains much more than the observed plan-
ets, stars, and galaxies. Up to 95 percent of the universe 
is made up of matter that does not emit light (called dark 
matter) and a form of energy that permeates all of space 
(dark energy)—neither of which is well understood.

The Scale of the Universe
One of the first conceptual hurdles that we face as we 
begin to think about the universe is its sheer size. If a hill 
is big, then a mountain is very big. If a mountain is very 
big, then Earth is enormous. But where do we go from 
there? We quickly run out of superlatives as the scale 
begins to dwarf our human experience. One technique 
that can help us develop 
a sense for the size of 
things in the universe is 
to discuss time as well as 
distance. If you are driv-
ing down the highway at 
60 kilometers per hour (km/h), a kilometer is how far 
you travel in a minute. Sixty kilometers is how far you 
travel in an hour. Six hundred kilometers is how far you 
travel in 10 hours. So to get a feeling for the difference in 
size between 600 km and 1 km, you can think about the 
difference between 10 hours and a single minute.

We can think this same way about astronomy, but the 
speed of a car on the highway is far too slow to be useful. 
Instead we use the greatest speed in the universe—the 
speed of light. Light travels at 300,000 kilometers per 
second (km/s), circling Earth (a distance of 40,000 km) in 

1.1 Getting a Feel for the 
Neighborhood

The title of this book—21st Century Astronomy—empha-
sizes that this is the most fascinating time in history to be 
studying this most ancient of sciences. Loosely translated, 
the word astronomy means “patterns among the stars.” 
But modern astronomy—the astronomy we will talk about 
in this book—has progressed beyond merely looking at the 
sky and cataloging what is visible there. Our intent is to 
provide reliable answers to many of the questions that you 
might have asked yourself as a child when you looked at the 
sky. What are the Sun and Moon made of? How far away 
are they? What are stars? How do they shine? Do they have 
anything to do with me?

The origin and fate of the universe, and the nature of 
space and time, have become the subjects of rigorous sci-
entific investigation. Humans have long speculated about 
our beginnings, or origins. Who or what is responsible for 
our existence? How did the Sun, stars, and Earth form? The 
topic of scientific origins is a recurring theme in this book. 
The answers that scientists are finding to these questions 
are changing not only our view of the cosmos, but our view 
of ourselves.

Glimpsing Our Place in the Universe
Most people have a permanent address—building number, 
street, city, state, country. It is where the mail carrier de-
livers our postal mail. But let’s expand our view for a mo-
ment. We also live somewhere within an enormously vast 
universe. What, then, is our “cosmic address”? It might 
look something like this: planet, star, galaxy, galaxy group, 
galaxy cluster.

We all reside on a planet called Earth, which is orbiting 
under the influence of gravity about a star called the Sun. 
The Sun is an ordinary, middle-aged star, more massive 
and luminous than some stars but less massive and lumi-
nous than others. The Sun is extraordinary only because 
of its importance to us within our own Solar System. Our 
Solar System consists of eight planets: Mercury, Venus, 
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. It also 
contains many smaller bodies, such as dwarf planets, aster-
oids, and comets.

The Sun is located about halfway out from the center of a 
flattened collection of stars, gas, and dust referred to as the 
Milky Way Galaxy. Our Sun is just one among approximately 
200–400 billion stars scattered throughout the galaxy, and 
many of these stars are themselves surrounded by planets, 
suggesting that other planetary systems may be common.

What is Earth's  
cosmic address?

The travel time of light 
helps us understand the 

scale of the universe.



Getting a Feel for the Neighborhood  

Now follow along in Figure 1.2 as we move outward 
into the universe. The first thing we encounter is the 
Moon, 384,000 km away, or a bit over 11/4 second when 
we’re moving at the speed of light. If the size of Earth is 
a snap of your fingers, the distance to the Moon is about 
the time it takes to turn a page in this book. Continuing 
further, we find that at this speed the Sun is 81/3 minutes 
away, or the duration of a hurried lunch at the student 
union. Crossing from one side of the orbit of Neptune, the 
outermost planet in our Solar System, to the other takes 
about 8.3 hours. Think about that for a minute. Comparing 
the size of Neptune’s orbit to the circumference of Earth is 
like comparing the time of a good night’s sleep to a single 
snap of your fingers.

In crossing Neptune’s orbit, however, we have only just 
begun to consider the scale of the universe. Many steps 
remain. It takes a bit more than 4 years—the time between 
leap years—to cover the distance from Earth to the nearest 
star (other than the Sun). At this point, our analogy of us-
ing the travel time of light can no longer bring astronomical 
distance to a human scale. Light takes about 100,000 years 
to travel across our galaxy (the Milky Way). To reach the 
nearest large galaxies takes a few million years. To reach 
the limits of the currently observable universe takes 13.7 
billion years—the age of the universe, or about 3 times the 
age of Earth. LOOK BACK 
TIME SIMULATOR

The Origin and Evolution  
of the Chemical Elements
While seeking knowledge about the universe and how 
it works, modern astronomy and physics have repeat-
edly come face-to-face with a number of age-old questions 
long thought to be solely within the domain of religion or 
philosophy. The nature of the chemical evolution of the 
universe is such a case. Theory and observation indicate 
that the universe was created in a “Big Bang” some 13.7 
billion years ago. As a result of both observation and theo-
retical work, scientists now know that the only chemical 
elements found in substantial amounts in the early uni-
verse were the lightest elements: hydrogen and helium, 
plus tiny amounts of lithium, beryllium, and boron. Yet we 
live on a planet with a central core consisting mostly of 
very heavy elements such as iron and nickel, surrounded 
by outer layers made up of rocks containing large amounts 
of silicon and various other elements, all heavier than the 
original elements. Our bodies are built of carbon, nitro-
gen, oxygen, calcium, phosphorus, and a host of other 
chemical elements—again all heavier than hydrogen and 

just under 1/7 of a second—about the time it takes you to snap 
your fingers. So we say that the circumference of Earth is 1/7 
a light-second. Fix that comparison in your mind. The size 
of Earth is like a snap of your fingers.

Sun

Milky Way Galaxy

Local Group

Virgo Supercluster

Earth

Solar System

  Our cosmic address is: Earth, Solar System, Milky 
Way Galaxy, Local Group, Virgo Supercluster. We live on Earth, 
a planet orbiting the Sun in our Solar System, which is a star 
in the Milky Way Galaxy. The Milky Way is a large galaxy within 
the Local Group of galaxies, which in turn is located in the Virgo 
Supercluster.

http://wwnorton.com/gateway/getebooklink.aspx?s=astro4_ebook&p=41.0
http://wwnorton.com/gateway/getebooklink.aspx?s=astro4_ebook&p=41.1


VISUAL ANALOGY  Thinking about the time it takes for light to travel between objects helps us comprehend the 
vast distances in the universe. (Figures such as this one, with “Visual Analogy” tags, are images that make 
analogies between astronomical phenomena and everyday objects more concrete.)

Times shown are
light-travel times.

Because of the vast distances in the 
universe, we’re not showing objects 
to scale here: they’d be much too small!

Moving outward through the
universe at the speed of light,
going around Earth is like a
snap of your fingers,…

…the Moon is a little more
than a second away,…

…the Sun’s distance
is like a quick meal,…

…and the diameter of the
Solar System, based on the
orbit of the most distant planet,
Neptune, is a night’s sleep.

The distance to the nearest
star is like the time between
leap years,…

…the diameter of the
galaxy is like the age
of our species,…

…and the distance between
galaxies is like the time since
our earliest human ancestors
walked on Earth.

The size of the observable universe 
is like three times the age of Earth.

(a)

(b)

1.25 seconds
Earth

Moon

(c)

8.3 minutes
EarthSun

Earth’s circumference
1/7 second

(e)

4.2 years

2.5 million years

100,000 years

Proxima Centauri,
the closest star

to our Sun

Sun

(f)

Milky Way Galaxy

Earth’s Sun

(g)

Milky Way
Galaxy

Radius of the observable universe

Andromeda
Galaxy

13.7 billion years

(h)

(d)

8.3 hours

Neptune

Sun



Astronomy Involves Exploration and Discovery  

1.2 Astronomy Involves  
Exploration and Discovery

As you look at the universe through the eyes of astrono-
mers, you can also learn something of how science works. 
It is beyond the scope of this book to provide a detailed 
justification for all that we will say. However, we will try to 
offer some explanation of where key ideas come from and 
why scientists think these ideas are valid. We will be hon-
est when we are on uncertain, speculative ground, and we 
will admit it when the truth is that we really do not know. 
This book is not a compendium of revealed truth or a font of 
accepted wisdom. Rather, it is an introduction to a body of 
knowledge and understanding that was painstakingly built 
(and sometimes torn down and rebuilt) brick by brick.

Science is vitally important to our civilization. Electricity, 
cars, computers—all of these technologies are derived from 
science. Another manifestation of science is the technology 
that has enabled us to explore well beyond our planet. Since 
the 1957 launch of Sputnik, the first human-made satellite 
(an object in orbit about a more massive body), we have lived 
in an age of space exploration. Nearly six decades later, 
satellites are used for weather observation, communica-
tion, and global positioning (GPS); humans have walked on 
the Moon (Figure 1.4); and unmanned probes have visited 
planets. Spacecraft have flown past asteroids, comets, and 
even the Sun. Human inventions have landed on Mars, Ve-
nus, Titan (Saturn’s largest moon), and asteroids, and have 
plunged into the atmosphere of Jupiter. Most of what we 
know of the Solar System has resulted from these past six 
decades of exploration.

Satellite observatories in orbit around Earth have also 
given us many new perspectives on the universe. Space 
astronomy continues to 
show us vistas hidden from 
the gaze of ground-based 
telescopes by the protec-
tive but obscuring blanket 

helium. If these heavier elements that make up Earth and 
our bodies were not present in the early universe, where 
did they come from?

The answer to this question lies within the stars (Fig-
ure 1.3). Nuclear fusion reactions occurring deep within 
the interiors of stars combine atoms of light elements such 
as hydrogen to form more massive atoms. When a star ex-
hausts its nuclear fuel and nears the end of its life, it often 
loses much of its mass—including some of the new atoms 
formed in its interior—by blasting it back into interstellar 
space. We will talk later about the life and death of stars. 
For now it is enough to note that our Sun and Solar System 
are recycled—formed from a cloud of interstellar gas and 
dust that had been “seed-
ed” by earlier generations 
of stars. This chemical 
legacy supplies the build-
ing blocks for the interesting chemical processes that go on 
around us—chemical processes such as life. The atoms that 
make up much of what we see were formed in the hearts of 
stars. The singer-songwriter Joni Mitchell wrote, “We are 
stardust,” and this is not just poetry. Literally, we are made 
of the stuff of stars.

We are stardust.

  You and everything around you are composed of 
atoms forged in the interior of stars that lived and died before the 
Sun and Earth were formed. The supermassive star Eta Carinae, 
shown here, is currently ejecting a cloud of chemically enriched 
material just as earlier generations of stars once did to enrich our 
Solar System.

  Apollo 15 astronaut James B. Irwin stands by the 
lunar rover during an excursion to explore and collect samples from 
the Moon.

Space exploration has 
expanded our view  

of the universe.



Why Learn Astronomy?

of our atmosphere. Satellites capable of detecting the full 
spectrum of radiation—from the highest-energy gamma 
rays and X-rays, through ultraviolet and infrared radiation, 
to the lowest-energy microwaves—have brought surprising 
discovery after surprising discovery. Since the beginning 
of the 21st century, large astronomical observatories have 
been constructed on the ground as well. The objects in the 
sky are now seen by gamma-ray, X-ray, infrared, and radio 
telescopes (Figure 1.5), extending our observations into 
light that has shorter or longer wavelengths than we can 
see with our eyes.

A great deal of frontline astronomy is now carried out 
in large physics facilities like the particle collider shown in 
Figure 1.6. Today astronomers work along with their col-
leagues in related fields, such as physics, chemistry, geol-
ogy, and planetary science, to sharpen their understanding 
of the physical laws that govern the behavior of matter and 
energy and to use this understanding to make sense of our 
observations of the cosmos. Astronomy has also benefited 
enormously from the computer revolution. The 21st cen-
tury astronomer spends far more time staring at a computer 
screen than peering through the eyepiece of a telescope. 
Astronomers use computers to collect and analyze data from 
telescopes, calculate physical models of astronomical ob-
jects, and prepare and disseminate the results of their work.

  Visible-light (a) and X-ray (b) telescopic images of the Sun.

  The Large Hadron Collider (which is buried along 
the path indicated by the red circle) is a particle accelerator 
near Geneva, Switzerland, that provides clues about the physical 
environment during the birth of the universe. Laboratory 
astrophysics, in which astronomers model important physical 
processes under controlled conditions as they do at this facility, 
has become an important part of astronomy.

(a) (b)



Science Is a Way of Viewing the World   

or ideas, followed by hypothesis, followed by prediction, 
followed by further observation or experiments to test the 
prediction, and ending with a tested theory (see the Process 
of Science Figure on the next page). A hypothesis may be 
the forerunner of a scientific theory, or it may be based on 
an existing theory, or both. Scientists build theoretical 
models that are used to connect theories with the behavior 
of complex systems. Ultimately, the basis for deciding among 
competing theories is the success of their predictions. Some 
theories become so well tested and are of such fundamental 
importance that people refer to them as physical laws.

A scientific principle is a general idea or sense about 
how the universe is that guides the construction of new 
theories. Occam’s razor, for example, is a guiding principle 
in science stating that when we are faced with two hypoth-
eses that explain a particular phenomenon equally well, 
we should adopt the simpler of the two, unless the more 
complicated answer better matches the results of observa-
tions or experiment. Another principle comes from the late 
astronomer Carl Sagan (1934–1996) and is often phrased as 
“Extraordinary Claims Require Extraordinary Evidence,” 
meaning that when making a new and truly extraordinary 
claim that has not been tested, confirmed, or proven, ex-
traordinary evidence is required.

At the heart of modern astronomy is the adoption of an 
additional principle: the cosmological principle. The cosmo-
logical principle states that on a large scale, the universe looks 
the same everywhere. That is, when people look out around 
in every direction, what they see is representative of what 
the universe is generally 
like. In other words, there 
is nothing special about 
our particular location. By 
extension, the cosmological 
principle asserts that matter and energy obey the same physi-
cal laws throughout space and time as they do today on Earth. 
This assumption is important because it means that the same 
physical laws that we observe and apply in terrestrial labora-
tories can be used to understand what goes on in the centers 
of stars or in the hearts of distant galaxies. Each new success 
that comes from applying the cosmological principle to obser-
vations of the universe around us adds to our confidence in 
the validity of this cornerstone of our worldview. We will dis-
cuss the cosmological principle in more detail in Chapter 19.

Science as a Way of Knowing
The path to scientific knowledge is solidly based on the 
scientific method. This concept is so important to an under-
standing of how science works that we should emphasize it 
once again. The scientific method consists of observation 

1.3 Science Is a Way  
of Viewing the World 

The Scientific Method  
and Scientific Principles
What is the scientific method? Consider a scientist coming 
up with an idea that might explain a particular observation 
or phenomenon. She presents the idea to her colleagues 
as a hypothesis. Her colleagues then look for testable pre-
dictions capable of disproving her hypothesis. This is an 
important property of the 
scientific method: a scien-
tific hypothesis must be 
falsifiable—in other words, 
disprovable. (Note that a 
falsifiable hypothesis—one 
capable of being shown false—may not be testable using 
current technology, but scientists must at least be able to 
outline an experiment or observation that could prove the 
idea wrong.) If continuing tests fail to disprove a hypoth-
esis, the scientific community will come to accept it as a 
theory and, after enough confirmation, eventually treat it 
as a law of nature. Scientific theories are accepted only as 
long as their predictions are borne out. A classic example 
is Einstein’s theory of relativity, which we cover in some 
depth in Chapter 18. The theory of relativity has withstood 
a century of scientific efforts to disprove its predictions.

Science is sometimes misunderstood because of the ways 
that scientists use everyday words. An example is the word 
theory. In everyday language, theory may mean a conjecture 
or a guess: “Do you have a theory about who might have done 
it?” “My theory is that a third party could win the next elec-
tion.” In everyday parlance a theory is something worthy of 
little serious regard. “After all,” people say, “it’s only a theory.”

In stark contrast, a scientific theory is a carefully 
constructed proposition that takes into account all the 
relevant data and all our understanding of how the world 
works. A theory makes testable predictions about the 
outcome of future observations and experiments. It is a 
well-developed idea that is ready to be tested by what is 
observed in nature. A well-corroborated theory is a theory 
that has survived many such tests. Far from being simple 
speculation, scientific theories represent and summarize 
bodies of knowledge and understanding that provide fun-
damental insights into the world around us. A successful 
and well-corroborated theory is the pinnacle of human 
knowledge about the world.

In science, a hypothesis is an idea that leads to testable 
predictions. The scientific method consists of observation 

There is nothing special 
about our place in  

the universe.

The scientific method 
includes trying to  

falsify ideas.




